Implementation of a Cross-Layer Sensing Medium-Access Control Scheme
نویسندگان
چکیده
In this paper, compressed sensing (CS) theory is utilized in a medium-access control (MAC) scheme for wireless sensor networks (WSNs). We propose a new, cross-layer compressed sensing medium-access control (CL CS-MAC) scheme, combining the physical layer and data link layer, where the wireless transmission in physical layer is considered as a compress process of requested packets in a data link layer according to compressed sensing (CS) theory. We first introduced using compressive complex requests to identify the exact active sensor nodes, which makes the scheme more efficient. Moreover, because the reconstruction process is executed in a complex field of a physical layer, where no bit and frame synchronizations are needed, the asynchronous and random requests scheme can be implemented without synchronization payload. We set up a testbed based on software-defined radio (SDR) to implement the proposed CL CS-MAC scheme practically and to demonstrate the validation. For large-scale WSNs, the simulation results show that the proposed CL CS-MAC scheme provides higher throughput and robustness than the carrier sense multiple access (CSMA) and compressed sensing medium-access control (CS-MAC) schemes.
منابع مشابه
Collision Avoidance in TV White Spaces: A Cross-layer Design Approach for Cognitive Radio Networks
One of the most promising applications of cognitive radio networks (CRNs)is the efficient exploitation of TV white spaces (TVWSs) for enhancing the performance of wireless networks. In this paper, we propose a cross-layer design (CLD) of carrier sense multiple access with collision avoidance (CSMA/CA) mechanism at the medium access control (MAC) layer with spectrum sensing (SpSe) at the physica...
متن کاملDemonstration Abstract: WARP – A Flexible Platform for Clean-Slate Wireless Medium Access Protocol Design
The flexible interface between the medium access layer and the custom physical layer of the Rice University Wireless Open-Access Research Platform (WARP) provides a high performance research tool for clean-slate cross layer designs. As we target a community platform, we have implemented various basic PHY and MAC technologies over WARP. Moreover, we are implementing cross-layer schemes such as r...
متن کاملA Cross-Layer Approach in Sensing and Resource Allocation for Multimedia Transmission over Cognitive UWB Networks
We propose an MAC centric cross-layer approach to address the problem of multimedia transmission over cognitive Ultra Wideband (C-UWB) networks. Several fundamental design issues, which are related to application (APP), medium access control (MAC), and physical (PHY) layer, are discussed. Although substantial research has been carried out in the PHY layer perspective of cognitive radio system, ...
متن کاملAn Energy-Efficient MAC Protocol for Delay-Sensitive Wireless Sensor Networks
Abstract. In this paper, we propose a new medium access control protocol for wireless sensor networks, named LE-MAC (Latency and Energy aware MAC) that aims to minimize data delivery latency as well as energy consumption. To achieve both goals, we exploit a physical carrier sensing feature in CSMA/CA and combine it with a cross-layer technique. When nodes that are in routing path between source...
متن کاملSDRCS: A service-differentiated real-time communication scheme for event sensing in wireless sensor networks
Real-time communication is crucial for wireless sensor networks (WSNs) to accomplish collaborative event sensing tasks with specific timing constraints. In this work, a servicedifferentiated real-time communication scheme (SDRCS) is developed to provide soft real-time guarantees for event-based traffic in WSNs. SDRCS features a cross-layer packet forwarding design to integrate the real-time rou...
متن کامل